So you want to use GIS in your research...

REBECCA BARTLETT, GIS LIBRARIAN

MEAGHAN KENNY, GEOSPATIAL DATA SERVICES SPECIALIST

GIS@CARLETON.CA

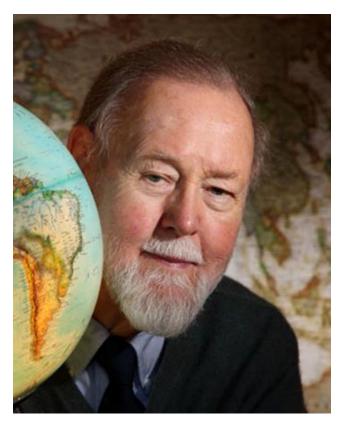
Overview

- What is GIS and what can it do?
- GIS data
 - Raster & Vector layers
 - Attributes
 - Structured & semi-structured data
- Finding GIS data
- Selecting a GIS software
- GIS project tips

Before we start

GIS has a lot of terminology and technical quirks, so can be frustrating. That's normal!

We often say that it's not a learning curve, but a brick wall.

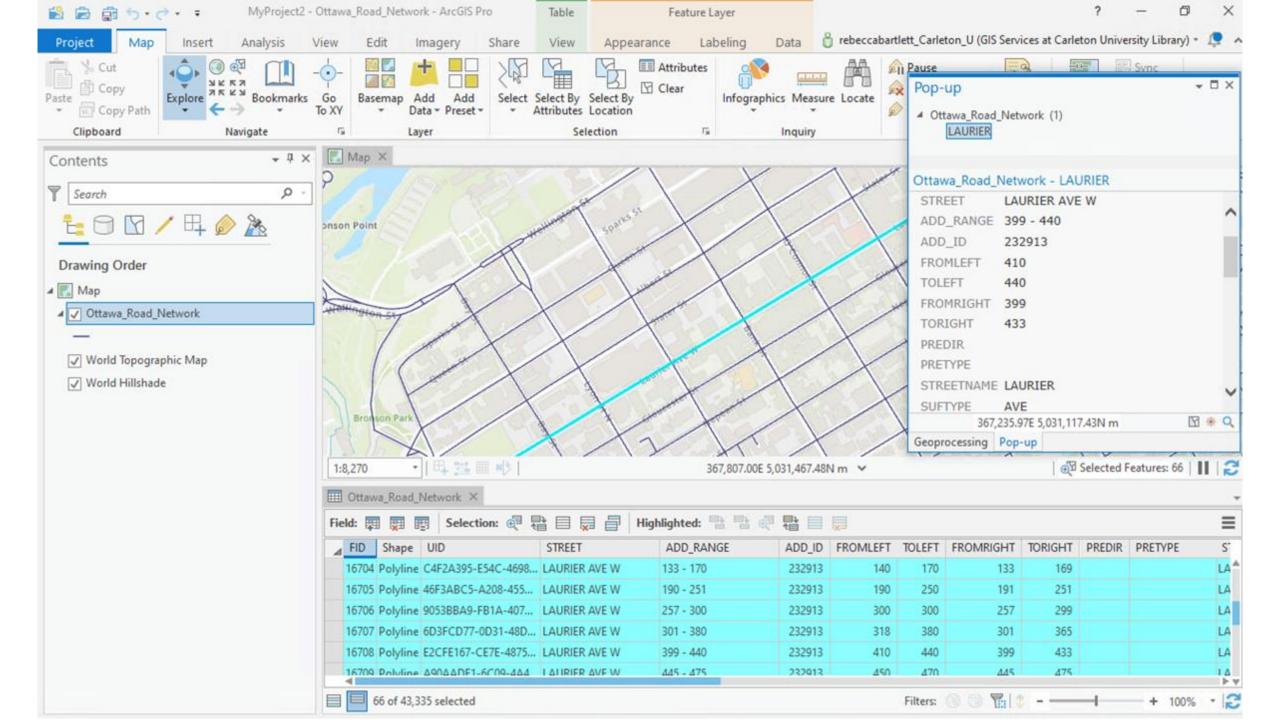


What is GIS?

What is GIS?

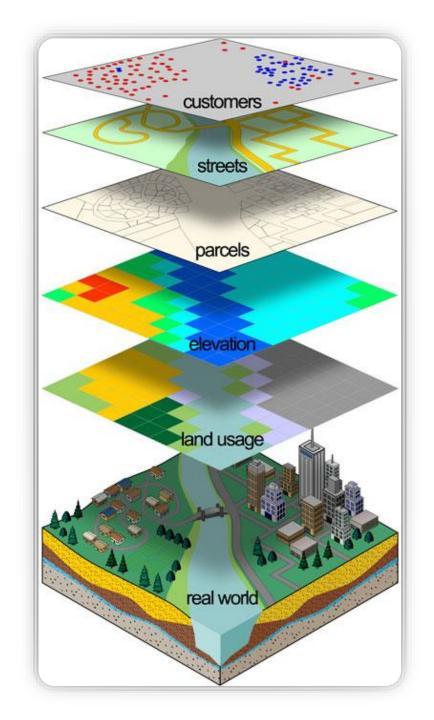
GIS = Geographic Information
 System

 Invented in the 1960s by Roger Tomlinson at Natural Resources Canada

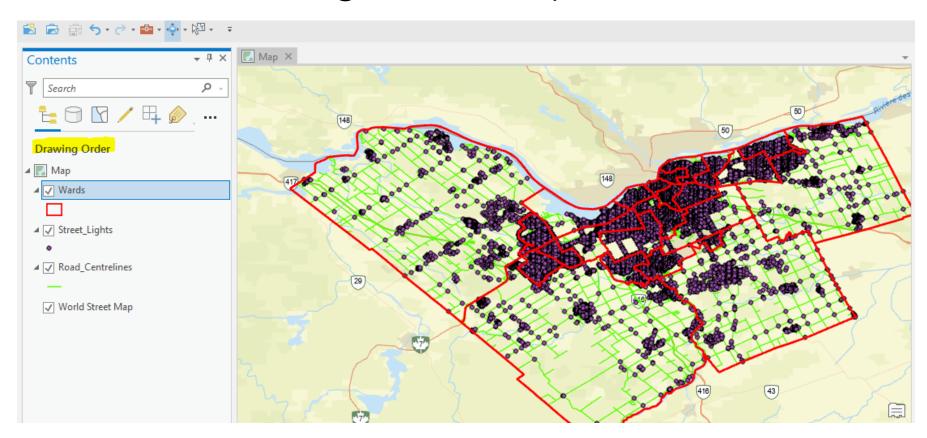

Source: https://commons.wikimedia.org/wiki/File:RogerGlobe.jpg

What is GIS?

- There are 3 main components to a GIS:
 - Visual representation as layers (map)
 - Table (data)
 - Analysis tools (software)


These 3 components are directly linked

- What happens in the table (underlying data) is represented visually in the map layer.
- If you do analysis (e.g. querying, filtering a selection) in the table, the changes are represented and visualized in the layer.


What is GIS: GIS layers

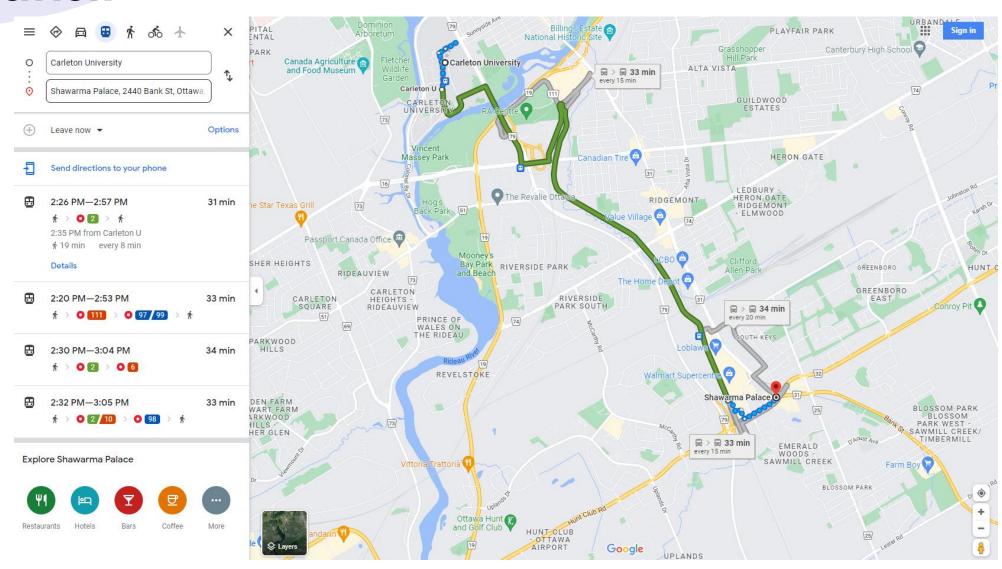
- Each GIS dataset is a layer when used in GIS software
- Layers can be stacked on top of one another to create a map or to perform analysis
- It is important to note that there is a hierarchy to the layer drawing order
 - If you place a polygon layer with a colour fill on top of a point layer, your points may not show up

What is GIS: GIS layers

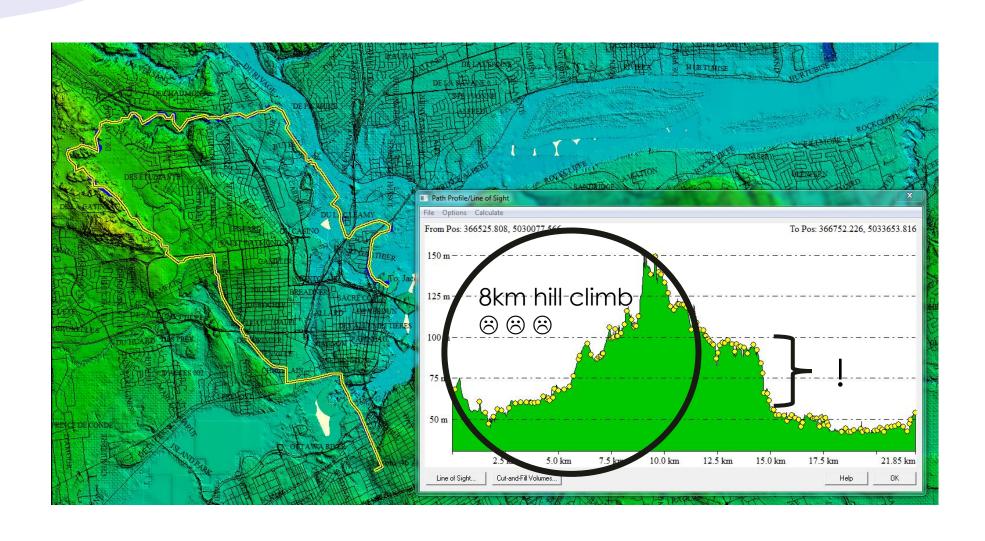
Layer order or drawing order is important to take note of

What can GIS do?

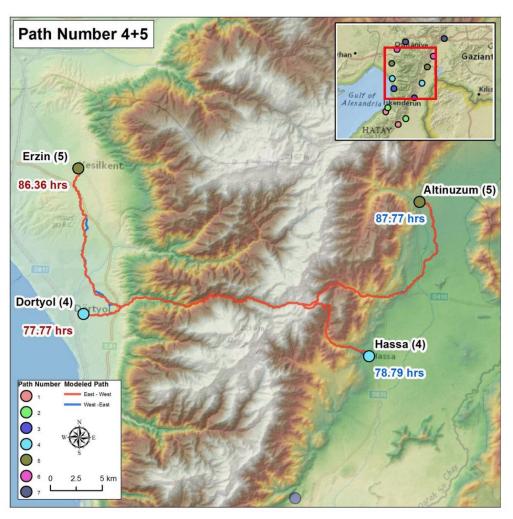
- It can help solve spatial questions or problems. For example:
 - Where should we build a new social service center so that it serves the most people in need?
 - What is the topology or surficial geology of the location where a new build will take place?
 - What percentage of an area has tree canopy?
 - How can we visualize changing patterns in sea ice?

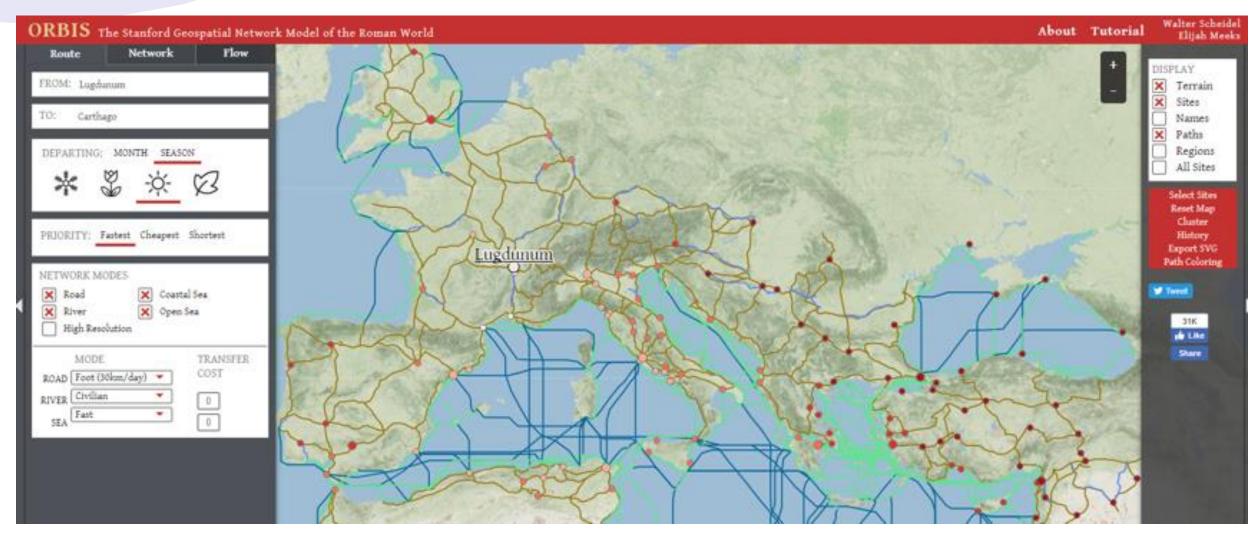

But...how?!

Spatial analysis!

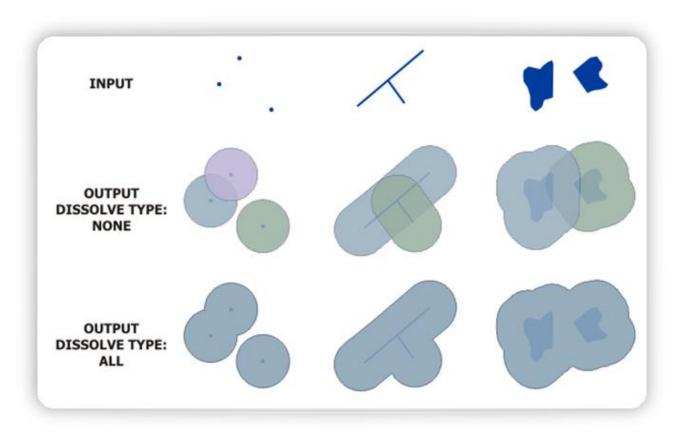

Spatial Analysis: What is it?

- Uses geospatial data to study entities using their geographic or topological properties
- Can identify relationships between different entities, or combine entities to create new information
 - What's the fastest route from Carleton to Shawarma Palace by public transit?
 - How many people live within 5km of Ottawa hospitals?
 - If moose prefer marshes and areas more than 1km away from roads, where are their ideal habitats?


Spatial Analysis: Shawarma Palace via transit

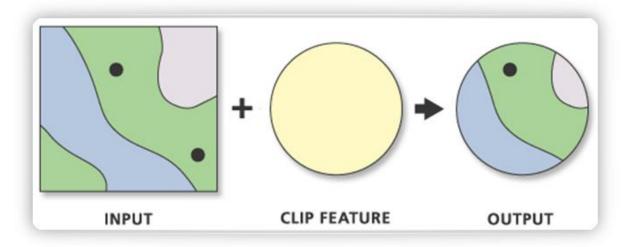

Spatial Analysis: Prepare for a bike ride

Spatial Analysis: Bronze Age travel routes across Amanus Mountains in Türkiye


Spatial Analysis: Google Maps but in Ancient Rome

Source: http://orbis.stanford.edu/

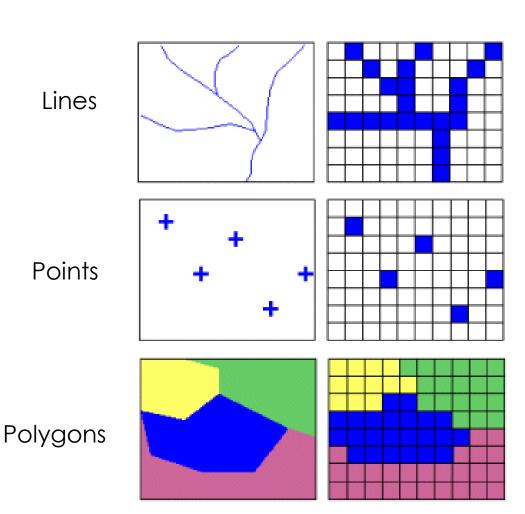
Spatial Analysis: Buffer


- A buffer creates an area around an entity at a specified distance
 - e.g. a 5km-diameter circle around a hospital

Source: https://desktop.arcgis.com/en/arcmap/latest/tools/analysis-toolbox/buffer.htm

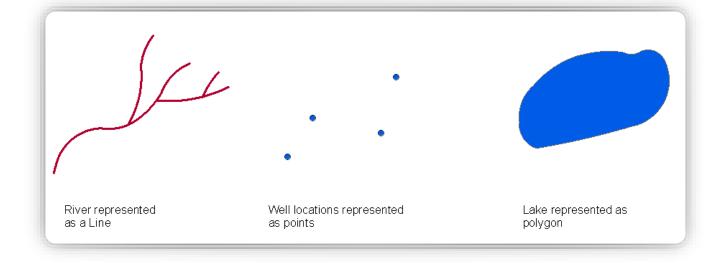
Spatial Analysis: Clip

- Clipping uses a polygon to cut out all the entities that fall within that polygon
 - e.g. all the homes within that 5km hospital buffer

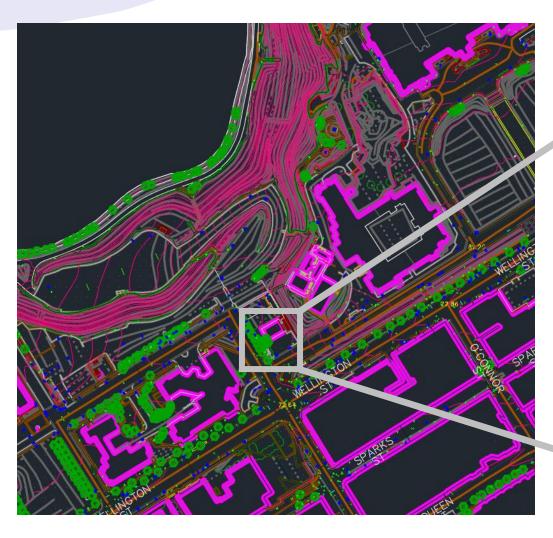

Source: https://desktop.arcgis.com/en/arcmap/latest/tools/analysis-toolbox/clip.htm

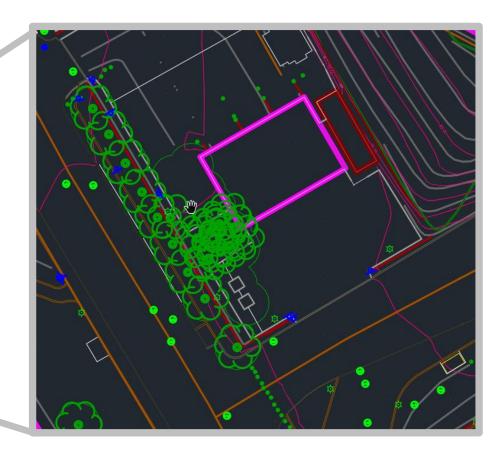
GIS Data

GIS Data: Two types of layers

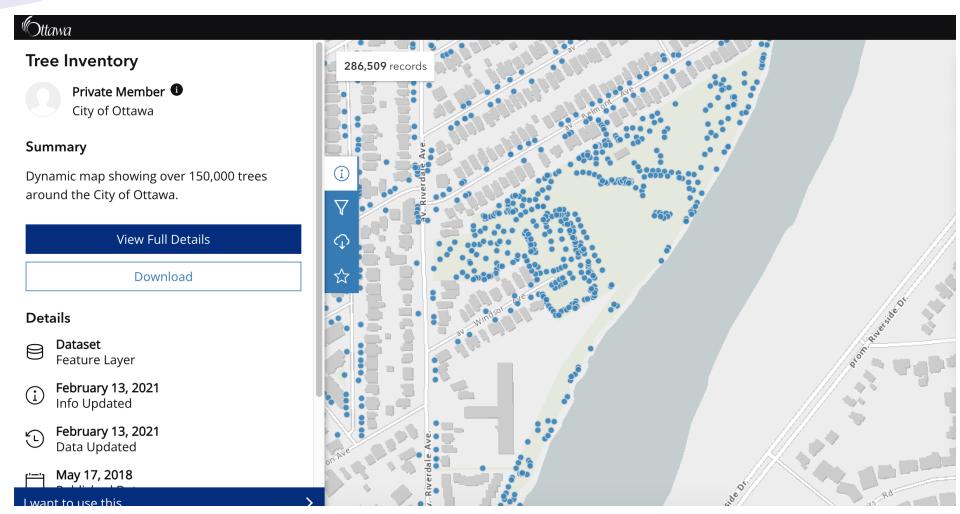

- Vector: points, lines, and polygon geometries
 - File types include DWG, shapefiles, Google Earth KML

- Raster: continuous grids made up of pixels
 - File types include TIFF & JPEG
 - Air photos are raster files

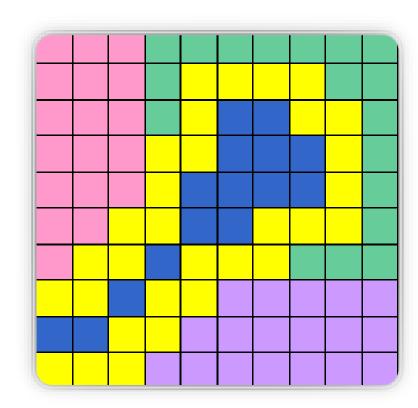


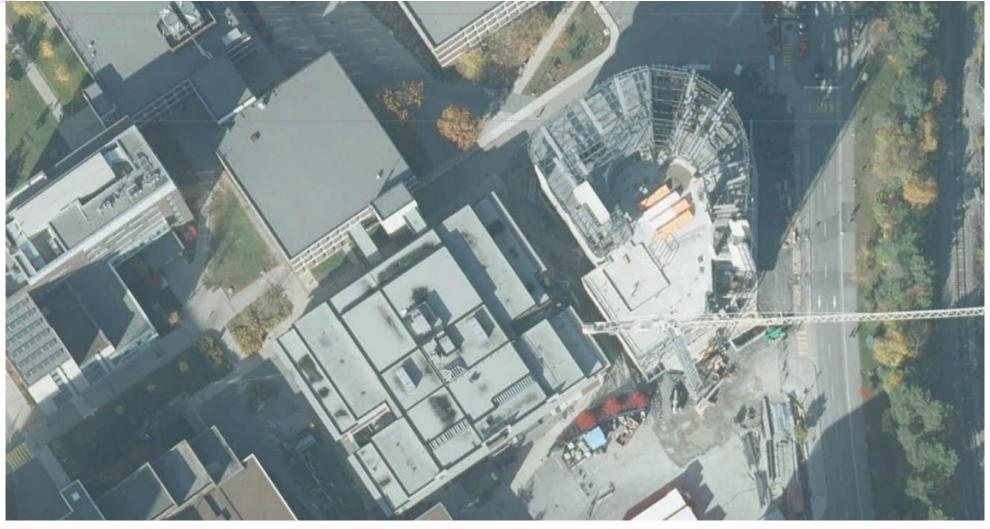

GIS Data: Vector layers

- Vector Geographical features often expressed as types of geometry.
 - Points, Polylines & Polygons
 - Common file formats
 - Esri Shapefile (shp)
 - AutoCAD Drawing (dwg)
 - Google Earth (kml)
 - OpenStreetMap (osm)


Vector data: Ottawa 1:1000 topographic data

Source: Ottawa 1:1000 topographic data, tile 367031A.dwg; https://carleton-u.maps.arcgis.com/apps/PublicInformation/index.html?appid=d572e8f92e21414 483f293c667ae0c9e

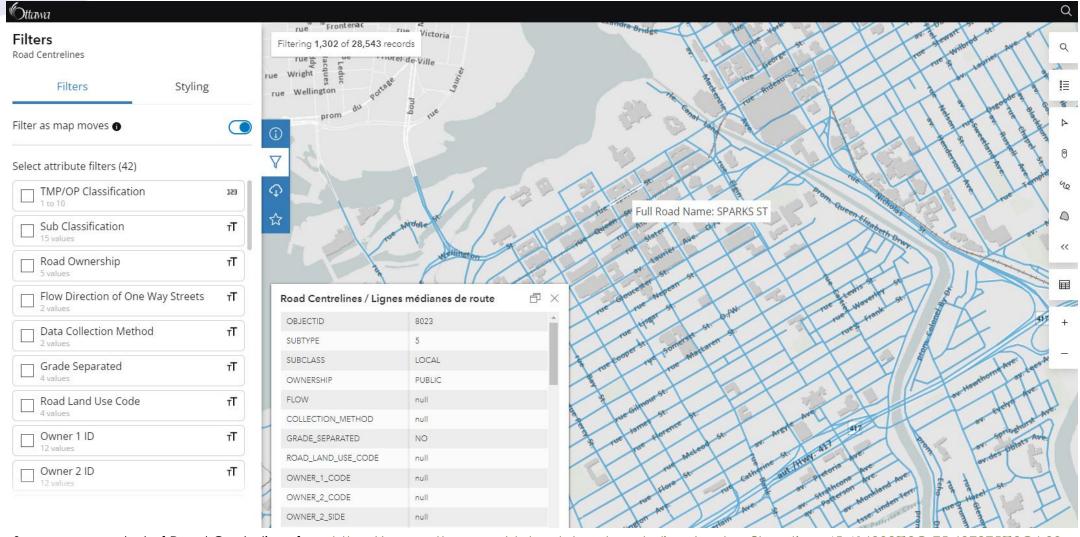

Vector data: Ottawa tree survey


Source: https://open.ottawa.ca/datasets/tree-inventory/explore?location=45.393315%2C-75.675664%2C8.00

GIS Data: Raster layers

- Raster Type of digital image represented by reducible and enlargeable grids or pixels.
 - Air photos, satellite images, Digital Elevation Models (DEMs)
 - Various file formats:
 - GeoTiff
 - JPEG
 - JPEG2000
 - MrSID

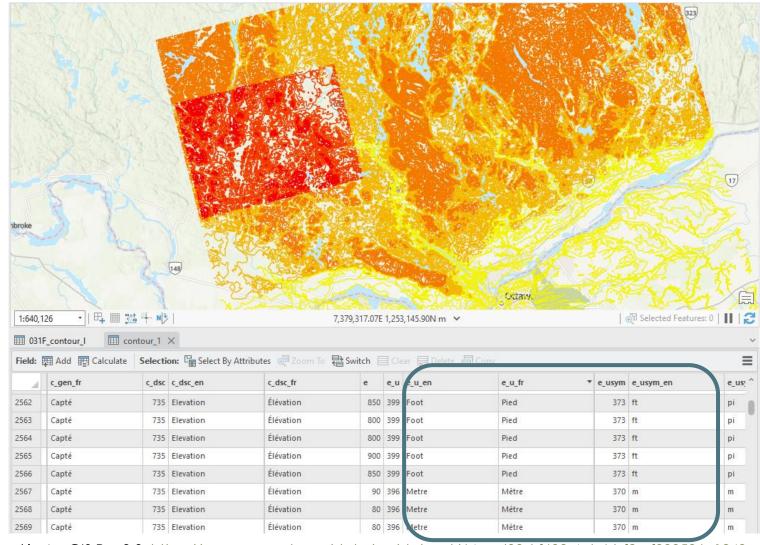
Raster layer: Air photo



Source: 2019 DRAPE imagery, Land Information Ontario; https://geo.scholarsportal.info/#r/details/ uri@=2799205642

GIS Data: Attributes

- Attributes are what describe a specific feature such as:
 - Lines representing roads could have the road name, speed limit, direction, address range, etc.
 - Points representing trees could include species and circumference attributes
 - Areas representing building footprints could include address, business names (if relevant), property owner, etc.


GIS Data: Attributes

Source: screenshot of Road Centrelines from https://open.ottawa.ca/datasets/road-centrelines/explore?location=45.416302%2C-75.697275%2C6.00

GIS Data: Attributes

Natural Resources
 Canada contours
 in Quebec where
 one section is
 measured in feet
 and rest is
 measured in
 metres

GIS Data: data structure

- Structured data is comprised of clearly defined data types whose pattern makes them easily searchable
- **Unstructured data** "everything else" is comprised of data that is usually not as easily searchable, including formats like audio, video, and social media postings.
- To make things even more clear, there is also occasionally semi-structured data

Structured vs. semi-structured data

Α	В	С	D	E	F	G	H	1	J	K	L	M	N	0	P
BJECTID	OBJECT_ID	DESCR	RANK	SP_EVID_0	SP_EVID	LOC_CLS	BUS_EFF_DT	ACCURACY	SYS_AREA S	YS_LENG EFF	DATE	Shape_Lei C	ORIG_FID	POINT_X	POINT_Y
1	69941860	Black Bear Den S	Very High	Υ	Yes	Upland I	2009-11-30	Within 20 metres	163.985	52.298	2010-01-27	0.000563	0	-78.1307	45.3299
2	1050126561	Black Bear Den S	High	Υ	Yes	Upland I	1998-04-14	RE Reliable (to 100m)	1252	0	2003-12-04	0.001384	1	-78.1229	45.8283
3	1050126562	Black Bear Den S	High	Υ	Yes	Shoreline	1998-04-14	RE Reliable (to 100m)	1252	0	2003-12-04	0.001383	2	-78.0956	45.8152
4	1050126563	Black Bear Den S	High	Υ	Yes	Upland I	1998-04-14	RE Reliable (to 100m)	1252	0	2003-12-04	0.001383	3	-78.1094	45.8131
5	1050126564	Black Bear Den S	High	Υ	Yes	Upland I	1998-04-14	RE Reliable (to 100m)	1252	0	2003-12-04	0.001382	4	-78.1583	45.7421
6	1050126565	Black Bear Den S	High	Υ	Yes	Upland I	1998-04-14	RE Reliable (to 100m)	1252	0	2003-12-04	0.001382	5	-78.2066	45.7362
7	1050126566	Black Bear Den S	High	Υ	Yes	Upland I	1998-04-14	RE Reliable (to 100m)	1252	0	2003-12-04	0.001382	6	-78.0465	45.7237
8	1050126567	Black Bear Den S	High	Υ	Yes	Shoreline	1998-04-14	RE Reliable (to 100m)	1252	0	2003-12-04	0.001382	7	-78.0479	45.7236
9	1050126568	Black Bear Den S	High	Υ	Yes	Upland I	1998-04-14	RE Reliable (to 100m)	1252	0	2003-12-04	0.001382	8	-78.0469	45.7231
10	1050126569	Black Bear Den S	High	Υ	Yes	Upland I	1998-04-14	RE Reliable (to 100m)	1252	0	2003-12-04	0.001382	9	-78.3004	45.7260
11	1050126570	Black Bear Den S	High	Υ	Yes	Upland I	1998-04-14	RE Reliable (to 100m)	1252	0	2003-12-04	0.001382	10	-78.0944	45.6978
12	1050126571	Black Bear Den S	High	Υ	Yes	Shoreline	1998-04-14	RE Reliable (to 100m)	1252	0	2003-12-04	0.001381	11	-78.3386	45.6598
13	1050126572	Black Bear Den S	High	Υ	Yes	Upland I	1998-04-14	RE Reliable (to 100m)	1252	0	2003-12-04	0.00138	12	-78.3255	45.5801
14	1050847495	Black Bear Den S		Υ	Yes		2001-01-18	Within 20 metres	555.781	0	2004-02-27	0.001194	13	-78.8975	45.7181
15	1050847496	Black Bear Den S	i	Υ	Yes		2001-01-18	Within 20 metres	1256.5	0	2004-02-27	0.001385	14	-78.9016	45.7078

			Ottawa, C	City [Census subdivisi	on], Ontario			Ontario [F	Province]				
Topic	Characteristics	Note	Total	Flag_Total Male	Flag_Male Fema	le	Flag_Fe	m: Total	Flag_Tota	Male	Flag_Mal	e Female	Flag_Female
			Counts (u	nless otherwise spec	ified)								
Population and dwellings	Population; 2016	1	934243		200			13448494			200		200
Population and dwellings	Population; 2011	1	883391				***	12851821					
Population and dwellings	Population percentage cha	nge; 2011 t	5.8		VAC:		2023	4.6			1000		200
Population and dwellings	Total private dwellings	2	395985				***	5598391					
Population and dwellings	Private dwellings occupied	3	373756		100		200	5169174					200
Population and dwellings	Population density per squ	are kilome	334.8				***	14.8					***
Population and dwellings	Land area in square kilome	tres	2790.3				200	908699.3					2.0
Age characteristics	Total - Age groups and aver	4	934245	453875	480	0365		13448495		655939	0	688910	5
Age characteristics	0 to 14 years		155680	79185	70	6490		2207970		113161	5	107635	D
Age characteristics	0 to 4 years		48870	24800	24	4070		697360		35730	0	34005	5
Age characteristics	5 to 9 years		53715	27365	20	6350		756085		38732	0	36876	5
Age characteristics	10 to 14 years		53095	27020	20	6075		754530		38700	0	36753	0

• GIS data needs to be structured to work correctly in GIS software.

GIS data may not start as structured or even semi-structured data

Any data with a geographic component can be mapped

- Address, town, country, latitude-longitude coordinates, etc.
- That information can come from just about anywhere

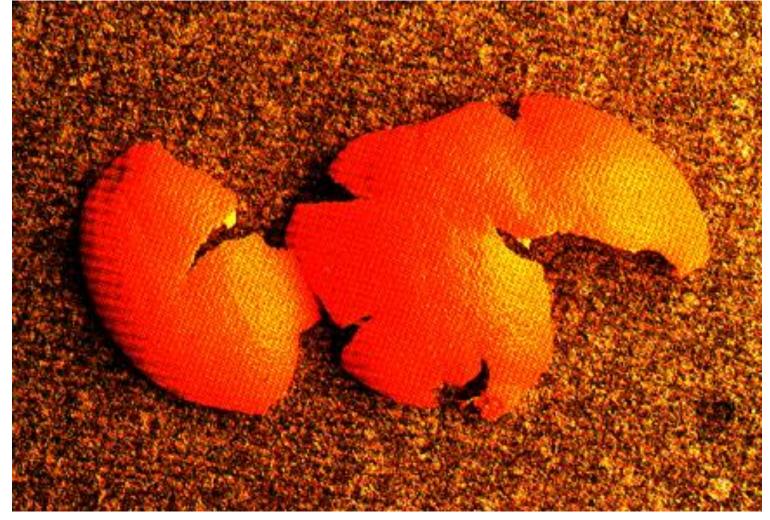
Source: Wikipedia

San Diego Fireworks 2012, LOUD and up close

CHAPTER I

JONATHAN HARKER'S JOURNAL

(Kept in shorthand.)

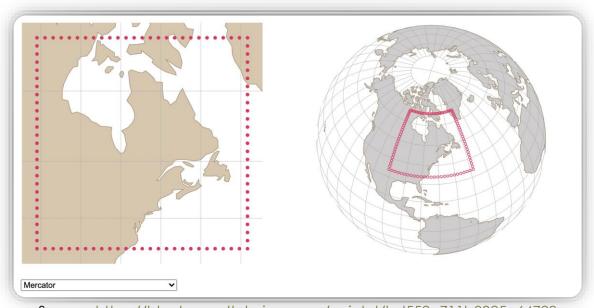

3 May. Bistritz.—Left Munich at 8:35 P. M., on 1st May, arriving at Vienna early next morning; should have arrived at 6:46, but train was an hour late. Buda-Pesth seems a wonderful place, from the glimpse which I got of it from the train and the little I could walk through the streets. I feared to go very far from the station, as we had arrived late and would start as near the correct time as possible. The impression I had was that we were leaving the West and entering the East; the most western of splendid bridges over the Danube, which is here of noble width and depth, took us among the traditions of Turkish rule.

https://www.gutenberg.org/cache/epub/345/pg345-images.html

...but it will need to end up as structured data to work in GIS software

O P	0	N	M	L	K	J	1	Н	G	F	E	D	С	В	Α
OINT_X POINT_	POINT_	ORIG_FID	Shape_Ler	_DATE	YS_LENG EF	SYS_AREA S	ACCURACY	BUS_EFF_DT	LOC_CLS	SP_EVID	SP_EVID_	RANK	DESCR	OBJECT_ID	OBJECTID
-78.1307 45.329	-78.13	0	0.000563	2010-01-27	52.298	163.985	Within 20 metres	2009-11-30	Upland I	Yes	Υ	Very High	Black Bear Den S	69941860	1
-78.1229 45.828	-78.12	1	0.001384	2003-12-04	0	1252	RE Reliable (to 100m)	1998-04-14	Upland I	Yes	Υ	High	Black Bear Den S	1050126561	2
-78.0956 45.815	-78.09	2	0.001383	2003-12-04	0	1252	RE Reliable (to 100m)	1998-04-14	Shoreline	Yes	Υ	High	Black Bear Den S	1050126562	3
-78.1094 45.813	-78.10	3	0.001383	2003-12-04	0	1252	RE Reliable (to 100m)	1998-04-14	Upland I	Yes	Υ	High	Black Bear Den S	1050126563	4
-78.1583 45.742	-78.15	4	0.001382	2003-12-04	0	1252	RE Reliable (to 100m)	1998-04-14	Upland I	Yes	Υ	High	Black Bear Den S	1050126564	5
-78.2066 45.736	-78.20	5	0.001382	2003-12-04	0	1252	RE Reliable (to 100m)	1998-04-14	Upland I	Yes	Υ	High	Black Bear Den S	1050126565	6
-78.0465 45.723	-78.04	6	0.001382	2003-12-04	0	1252	RE Reliable (to 100m)	1998-04-14	Upland I	Yes	Υ	High	Black Bear Den S	1050126566	7
-78.0479 45.723	-78.04	7	0.001382	2003-12-04	0	1252	RE Reliable (to 100m)	1998-04-14	Shoreline	Yes	Υ	High	Black Bear Den S	1050126567	8
-78.0469 45.723	-78.04	8	0.001382	2003-12-04	0	1252	RE Reliable (to 100m)	1998-04-14	Upland I	Yes	Υ	High	Black Bear Den S	1050126568	9
-78.3004 45.726	-78.30	9	0.001382	2003-12-04	0	1252	RE Reliable (to 100m)	1998-04-14	Upland I	Yes	Υ	High	Black Bear Den S	1050126569	10
-78.0944 45.697	-78.09	10	0.001382	2003-12-04	0	1252	RE Reliable (to 100m)	1998-04-14	Upland I	Yes	Υ	High	Black Bear Den S	1050126570	11
-78.3386 45.6598	-78.33	11	0.001381	2003-12-04	0	1252	RE Reliable (to 100m)	1998-04-14	Shoreline	Yes	Υ	High	Black Bear Den S	1050126571	12
-78.3255 45.580:	-78.32	12	0.00138	2003-12-04	0	1252	RE Reliable (to 100m)	1998-04-14	Upland I	Yes	Υ	High	Black Bear Den S	1050126572	13
-78.8975 45.718	-78.89	13	0.001194	2004-02-27	0	555.781	Within 20 metres	2001-01-18		Yes	Υ		Black Bear Den S	1050847495	14
-78.9016 45.707	-78.90	14	0.001385	2004-02-27	0	1256.5	Within 20 metres	2001-01-18		Yes	Υ	i	Black Bear Den S	1050847496	15
78.9	-78.9	14	0.001385	2004-02-27	0	1256.5	Within 20 metres	2001-01-18		Yes	Υ		Black Bear Den S	1050847496	15

GIS Data: Coordinate systems and projections


Source: https://krygier.owu.edu/krygier html/geog 222/geog 222 lo/geog 222 lo13 gr/orangepeel.jpg

GIS Data: Coordinate systems and projections

- There will always always be distortion in at least one of the following ways:
 - Area
 - Shape
 - Distance
 - Direction
- See the distortion:

 https://blocks.roadtolarissa.
 com/enjalot/bd552e711b83

 25c64729

Source: https://blocks.roadtolarissa.com/enjalot/bd552e711b8325c64729

GIS data in summary

- GIS data can be vector (points, lines, polygons) or raster (pixelated surface).
- Attributes and the attribute table are where details about different features are.
- Data can be structured, semi-structured, or unstructured
 - GIS software needs structured data to work properly
- Coordinate systems & projections can impact measurements due to distortion

Finding GIS data

GIS Data: How do I find it? (link)

- 1. Determine your **area(s) of interest**
- 2. Figure out what kind of data you want to find about that area
 - E.g.: road network, geology, air photos, provincial boundaries
- 3. Think about who (government, organization, etc.) cares enough to collect the data you want
 - Ask yourself "who cares?" and start there Municipal, Federal, organization, etc.
- 4. Your search should include the following resources:
 - A data portal for the government(s) or organization(s) you've determined may collect the data
 - The <u>Carleton Library's GIS search</u>
 - Google (be specific and use terms like GIS or shapefile as keywords)
- 5. Still can't find anything? We'll help: GIS@carleton.ca
 - That said, sometimes the data just doesn't exist

Selecting GIS software

GIS software: which one should you choose?

https://library.carleton.ca/guides/help/gis-software

There is no "one size fits all" answer

- Depends on several factors:
 - What is your final output going to be?
 - Interactive or static map? Print or digital?
 - What kind of analysis will you be doing?
 - Do you have a Windows or Mac computer?
 - Desktop ArcGIS products are Windows-only, but QGIS is Mac compatible
 - Will you need further GIS training?
 - ArcGIS products have a lot of online training/tutorials, as does QGIS

Project management tips

https://library.carleton.ca/guides/help/gis-project-tips

- Keep all data files together in one project folder
 - When saving your map project, make sure it is saved in the same folder as the data (makes it easy to zip everything up and share it if needed)
 - If you move your data from one folder location to another, the GIS software may not be able to find the path to the data and consequently will not display the data layers
- Keep raw data saved and untouched in a separate folder and save copies of it or any newly created files in a "working data" folder
- When saving data files or layers, don't use spaces or characters in the file names. Try using underscore for spaces or CamelCase

GIS services

https://library.carleton.ca/find/gis

- New 1st floor computer lab!
- GIS workstations all computers in library & remote option
 - Currently 3-hour daily time limit per user
 - GIS software packages (ArcGIS, Global Mapper, Google Earth Pro, QGIS)
 - DWG TrueView
- <u>Free student editions of ArcGIS software</u> (Windows only, not Mac compatible)
 - We recommend ArcGIS Pro for new users, QGIS for Macs
 - Which GIS software should I choose?
- GIS Help Guides includes sections for Architecture & Civil Engineering
 - GIS Project Tips may also be helpful
- Responsive via email: gis@carleton.ca

Future GIS Trajectories sessions All Thursdays, 2-4pm, computer lab 103

- Feb 8, Make an online map with Google My Maps
- Feb 15, Introduction to ArcGIS Online

- More to come after Reading Week...
 - ArcGIS Pro introduction + intermediate (2 different sessions)
 - Field Maps
 - Mapping census data in QGIS
 - Planet.com imagery

Questions?

DON'T HESITATE TO EMAIL US AT GIS@CARLETON.CA